Warm-up

Graph the function $y = 6 - \frac{1}{2}x^2$ below.

X	0	1	2	3
у				

Steps for Estimating the Area Between Curve and x-axis over [a, b]

- 1. ______
- 2.
- 3. _____
- 4. _____
- 5. _____
- 6.

Example 1

Calculate the area under the function over the interval [0, 3] using 3 rectangles by filling in the table below.

$$\Delta x =$$

i	X_i	$f(x_i)$	$A_i = \Delta x \cdot f(x_i)$
0			
1			
2			
3			

Example 2

Now calculate the same area using 6 rectangles. First redraw the graph and the rectangles, then fill in the table below.

$f(x) = 6 - \frac{1}{2}x^2$	[0, 3]	

 $n = \underline{\hspace{1cm}} \Delta x = \underline{\hspace{1cm}}$

Total Area = _____

i	X_i	$f(x_i)$	$A_i = \Delta x \cdot f(x_i)$
0			
1			
2			
3			
4			
5			
6			

Questions to Consider

- 1. Compare examples 1 and 2? Does the rectangle method overestimate or underestimate the area under the curve?
- 2. Which example does a better job estimating the area (look at the pictures)?
- 3. Why do you think that example does a better job?

2 Methods for Approximating the Area under a Curve

Figure 5.4.7 © John Wiley & Sons, Inc. All rights reserved.

Example 3: Calculate the area under the curve $f(x) = x^2 - 3$ over [2, 6] using both right endpoint and left endpoint approximation. Use 8 rectangles.

$\Delta x = \underline{\hspace{1cm}}$	Right Endpoint Area =	
	Left Endpoint Area =	

	i	X_i	$f(x_i)$	$A_i = \Delta x \cdot f(x_i)$
0				
1				
2				
3				
4				
5				
6				
7				
8				

Class Work (Round to the third decimal place.)

1	Approximate the area under	f	$(x) = x^2 - 3x + 4$	over	$[1 \ 4]$	Lusino	6 rectans	oles
1.	Approximate the area under	J١	$(\lambda) - \lambda = 3\lambda + 4$	UVCI	[1, +]	i using	o rectang	51CS.

 $\Delta x =$

Right Endpoint Area = _____

Left Endpoint Area = _____

				Dert Enapoi
	i	X_i	$f(x_i)$	$A_i = \Delta x \cdot f(x_i)$
0				
1				
2				
3				
4				
5				
6	•			

2. Approximate the area under $f(x) = \sqrt{x}$ over [2, 6] using 8 rectangles.

 $\Delta x =$

Right Endpoint Area = _____

Left Endpoint Area = _____

$(x_i) A_i = \Delta x \cdot f(x_i)$

3. Approximate the area under $f(x) = 2^x$ over [0, 1] using 5 rectangles.

 $\Delta x =$

Right Endpoint Area = _____

Left Endpoint Area = _____

i	X_i	$f(x_i)$	$A_i = \Delta x \cdot f(x_i)$
0			
1			
2			
3			
4			
5			